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Abstract

The study involves a mathematical analysis of the Brusselator system on a convex bounded
three-dimensional open domain, considering Neumann boundary conditions. We establish the
global existence and uniqueness of the strong solution for this system. Achieving high regularity
for the strong solution requires stringent conditions on the initial data. The study demonstrates
the continuous dependence of the solution on the initial conditions.
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1 Introduction

In practical scenarios, addressing the chemical reactionswithin systems involving two variable
intermediates and various initial and final products, whose concentrations are regulated through-
out the reaction mechanism, is a crucial challenge. This observation is articulated by Nicolis and
Prigogine in their work [2, 11, 14]. The rate equations necessitate the inclusion of at least a cu-
bic nonlinearity [12]. The trimolecular model, also known as the Brusselator [18], proves to be
a valuable tool for exploring chemical kinetics processes. It is employed to study ozone forma-
tion by a three-step collision involving a tri-molecular reaction with atomic oxygen. This model
finds applications in enzymatic reactions, as well as in establishing connections between specific
modes in plasma physics and lasers. Here, we investigate the Brusselator system with Neumann
boundary conditions in the form:(see [17, 4])

∂ϑ

∂t
− µ1∆ϑ− µ2∆φ = −(α+ 1)ϑ+ ϑ2φ, in ΩT , (1)

∂φ

∂t
− µ3∆φ = αϑ− ϑ2φ, in ΩT , (2)

∂ϑ

∂ν
= 0,

∂φ

∂ν
= 0, on ST , (3)

ϑ(·, 0) = ϑ0, φ(·, 0) = φ0, in Ω, (4)

where ΩT = Ω × (0, T ), (Ω) represents a bounded domain in RL(L = 1, 2, 3); where smooth
boundary ∂Ω, ST = ∂Ω × (0, T ), ν represents the exterior unit normal to ∂Ω, ϑ0 and φ0 denote
the initial data, and α > 0 is a positive parameter. An essential feature of the model is that the
positive diffusion constants µ1, µ2, µ3 typically satisfy µ1µ3 > µ2

2, and in some cases with µ2 ≪ 1.
On the boundary, α is dimensionless non-negative constant. The above coupled nonlinear system
arises in chemical kinetics, as well as in thermodynamics and in pattern formation. There are a lot
of recent studies that contain the study of this system in theory or numerically, which include a
lot of important applications associated with this system [9, 10].

The significance of investigating interaction propagation systems with Neumann boundary
conditions is underscored by various factors. While extensive research has been conducted on
interaction propagation systems with both Neumann and Dirichlet conditions of has been rela-
tively limited. Sherratt [15] introduces the concept of "oscillatory" reaction-diffusion equations
with applications ecology. Indeed, numerous recent studies have delved into the investigation of
interaction propagation systems with Neumann boundary conditions [3, 8].

2 Notation and Preliminaries

Let Ω be a bounded domain in RL, L ≤ 3 with boundary ∂Ω. For L = 1, 2, 3, we assume that
∂Ω is a Lipschitz boundary. In this paper, we utilize the standard notation for Sobolev spaces,
representing the norm ofWλ,γ(Ω), where λ ∈ N and γ ∈ [1,∞] by ∥ · ∥λ,γ and the semi-norm by
| · |λ,γ . When γ = 2, we denoteWλ,2(Ω) as Hλ(Ω) with the norm ∥ · ∥λ and semi-norm | · |λ. For
λ = 0,W 0,2(Ω) is equivalent to L2(Ω). The L2(Ω) inner product over Ω with norm ∥ · ∥0 = | · |0 is
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represented by (·, ·). Additionally, ⟨·, ·⟩ denotes the duality pairing between (H1(Ω))′ and H1(Ω),
where (H1(Ω))′ is the dual space of H1(Ω). The norm on (H1(Ω))′ is defined by

∥ψ∥(H1(Ω))′ := sup
κ ̸=0

|⟨ψ, κ⟩|
∥κ∥1

≡ sup
∥κ∥1=1

∥⟨ψ, κ⟩∥. (5)

Consider Y as a Banach space, where (1 ≤ γ ≤ ∞). Let Lγ(0, T ;Y ) represents the Banach space
of all measurable functions ψ(t) : [0, T ] → Y such that t→ ∥ψ(t)∥Y is in Lγ(0, T )with the norm

∥ψ(t)∥Lγ(0,T ;Y ) =

(∫ T

0

|ψ(t)|γY dt
) 1

γ

,

∥ψ(t)∥L∞(0,T ;Y ) = ess sup
t∈(0,T )

∥ψ(t)∥Y .

We also define Lγ(ΩT ) = Lγ(0, T ;Lγ(Ω)). Additionally, we define C([0, T ];Y ) as the space of
continuous functions from [0, T ] into Y , consisting of ψ(t) : [0, T ] → Y such that ψ(t) → ψ(t0) in
Y as t → t0. It is important to note that C([0, T ];Y ) is a Banach space with the associated norm
[16]:

∥ψ(t)∥C([0,T ];Y ) = sup
t∈[0,T ]

∥ψ(t)∥Y ,

and recall well-known Sobolev results:

H1(Ω)
c
↪→ Lγ(Ω) ↪→ (H1(Ω))′ holds for γ ∈


[1,∞] if L = 1,

[1,∞) if L = 2,

[1, 6] if L = 3,

(6)

where ’↪→’ denotes the continuous embedding. The embedding in (6) is compact, as per the
Rellich-Kondrachov theorem (refer to, for example, [5] page 8), with γ ∈ [1, 6] replaced by γ ∈
[1, 6) in this case when L = 3. This compact embedding is denoted by the symbol c

↪→.

The Hölder’s inequality is also required frequently: For 1 ≤ c, d ≤ ∞ such that 1
c + 1

d = 1; if
ϕ ∈ Lc(Ω) and ψ ∈ Ld(Ω), then ψϕ ∈ L1(Ω) and

∥ψϕ∥0,1 ≤ ∥ψ∥0,c∥ϕ∥0,d. (7)

Applying the Hölder’s inequality twice gives

∥ψϕθ∥0,1 ≤ ∥ψ∥0,c∥ϕ∥0,d∥θ∥0,e, for 1 ≤ c, d, e ≤ ∞ such that 1

c
+

1

d
+

1

e
= 1. (8)

For other purposes, we remember the Sobolev interpolation theorem [1]: Let ψ ∈ Wλ,γ(Ω), for
γ ∈ [1,∞], λ ≥ 1, then there are constantsA and ϵ = L

λ

(
1
q − 1

s

)
such that the followingGagliardo-

Nirenberg inequality holds by [16]:

∥w∥0,s ≤ A∥w∥1−ϵ
0,q ∥w∥ϵλ,q holds for s ∈


[q,∞] if λ− L

q > 0,

[q,∞) if λ− L
q = 0,

[q,− L
λ−L/q ] if λ− L

q < 0.

(9)

We also require the following Grönwall lemma in differential form: Let Γ(t) ∈ W 1,1(0, T ) and
φ1(t), φ2(t), φ3(t) ∈ L1(0, T ), where all functions are non-negative. It follows from

dΓ(t)

dt
+ φ2(t) ≤ φ3(t)Γ(t) + φ1(t) a.e. t ∈ [0, T ],
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that

Γ(T ) +

∫ T

0

φ2(t)dt ≤ exp(

∫ T

0

φ3(τ)dτ)Γ(0) + exp(

∫ T

0

φ3(τ)dτ)

∫ T

0

φ1(τ)dτ. (10)

We will be frequently need Young’s inequality in the form

ν1ν2 ≤ ε
ε1
ε2
νε11
ε1

+ ε−1 ν
ε2
2

ε2
,

1

ε1
+

1

ε2
= 1, (11)

that valids for any ν1, ν2 ≥ 0, ε > 0 and ε1, ε2 > 1. Another valuable implication of Young’s
inequality is as follows:

ν1ν2 ⩾ −εν
2
1

2
− ε−1 ν

2
2

2
, ∀ν1, ν2 ∈ R,∀ε > 0. (12)

3 Strong Solutions

Let {zi}∞i=1 be orthogonal basis forH1(Ω) and orthonormal basis for L2(Ω), depending on the
Neumann problem:

−∆zi + zi = µizi, in Ω,
∂zi
∂ν

= 0, on ∂Ω, (13)

where

1 ≤ µ1 ≤ µ2 ≤ µ3 ≤ · · · ≤ µk ≤ . . . with lim
i→∞

µi = ∞, (14)

is an infinite set of corresponding eigenvalues. Normalising so that (zi, zj)H1(Ω) = µiδij and
(zi, zj)L2(Ω) = δij . Let V k denote the finite dimensional subspace of H1(Ω) spanned by {zi}ki=0.
We define the L2 projection onto V k, P k : L2(Ω) 7−→ V k, by P kυ =

∑k
j=1(υ, zj)zj , we also no-

tice that (P kυ, ηk) = (υ, ηk) for all ηk ∈ V k. This definition clearly makes sense for elements of
H1(Ω) ⊂ L2(Ω):

(
∂ϑk

∂t
, ηk) + µ1(∇ϑk,∇ηk) + µ2(∇φk,∇ηk) = −(α+ 1)(ϑk, ηk) + ((ϑk)2φk, ηk) ∀ηk ∈ V k, (15)

(
∂φk

∂t
, ηk) + µ3(∇φk,∇ηk) = α(ϑk, ηk)− ((ϑk)2φk, ηk) ∀ηk ∈ V k. (16)

Theorem 3.1. Assume Ω ⊂ RL is bounded, convex , and open domain with a boundary ∂Ω of class C2,
suppose that ϑ0, φ0 ∈ H1(Ω) and

ϑ(x, t) ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) ∩ L4(ΩT ),

φ(x, t) ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

ϑ(x, t) + φ(x, t) ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

(17)
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then the system (G) have a unique strong solution {ϑ, φ} satisfying

ϑ(x, t) ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L∞(0, T ;L4(Ω)),

∩ L∞(0, T ;L6(Ω)) ∩ L6(ΩT ) ∩ L8(ΩT ) ∩ C([0, T ];H1(Ω)),

φ(x, t) ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L∞(0, T ;L4(Ω)),

∩ L∞(0, T ;L6(Ω)) ∩ L4(ΩT ) ∩ L6(ΩT ) ∩ C([0, T ];H1(Ω)),

∂ϑ

∂t
,
∂φ

∂t
∈ L2(ΩT ),

and the system (G) hold as equalities in L2(ΩT ). Furthermore,

(ϑ0(.), φ0(.)), 7−→ (ϑ(., t;ϑ0, φ0), φ(., t;ϑ0, φ0)),

is continuous in H1(Ω).

Proof. Proving Theorem 3.1 will take place in several stages.

3.1 Existence

Estimate I . Setting ηk = −∆ϑk, ηk = −∆φk in the (15) and (16), integrating by parts, it
follows that

1

2

d

dt
∥∇ϑk∥20 +

1

2

d

dt
∥∇φk∥20 + µ1∥∆ϑk∥20 + µ3∥∆φk∥20

= −µ2(∆φ
k,∆ϑk)− α(ϑk,∆φk) + (α+ 1)(ϑk,∆ϑk)− (φk(ϑk)2,∆ϑk) + (φk(ϑk)2,∆φk). (18)

By integrating by parts and use of (11), we obtain that

−(φk(ϑk)2,∆ϑk) =(∇(φk(ϑk)2,∇ϑk)

=

∫
Ω

φk(2ϑk∇ϑk)∇ϑk + (ϑk)2∇φk∇ϑkdx

≤2∥φk∥0,∞∥ϑk∥0,∞
∫
Ω

|∇ϑk|2dx+ ∥ϑk∥20,∞
∫
Ω

∇ϑk∇φkdx

≤
[
∥ϑk∥20,∞ + ∥φk∥20,∞

][
|ϑk|21

]
+

1

2

[
∥ϑk∥20,∞

][
|ϑk|21 + |φk|21

]
≤C

[
∥ϑk∥20,∞ + ∥φk∥20,∞

][
|ϑk|21 + |φk|21

]
.

(19)

By integrating by parts, and using (11) and (17), we have that

(φk(ϑk)2,∆φk) =− (∇(φk(ϑk)2),∇φk)

=−
∫
Ω

(ϑk)2∇φk∇φk + φk(2ϑk)∇ϑk∇φkdx

≤−
∫
Ω

|ϑk∇φk|2dx+
1

2

∫
Ω

|ϑk∇φk|2dx+ 2

∫
Ω

|φk∇ϑk|2dx

=
−1

2
∥ϑk∇φk∥20 + 2∥φk∥0,∞|ϑk|21.

(20)
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Now, by using (11) and (17) for the second and third terms in the right side of (18), we have that

(α+ 1)(ϑk,∆ϑk)− α(ϑk,∆φk) ≤ −(α+ 1)∥∇ϑk∥20 +
α2

2µ3
∥ϑk∥20 +

µ3

2
∥∆φk∥20. (21)

Compensating (19)-(21) into (18), and multiply the result by two, we get to

d

dt
∥∇ϑk∥20 +

d

dt
∥∇φk∥20 + µ1∥∆ϑk∥20 + (2µ3 −

µ2
2

µ1
)∥∆φk∥20 + 2(α+ 1)∥∇ϑk∥20 + ∥ϑk∇φk∥20

≤ α2

µ3
∥ϑk∥20 + C

[
∥ϑk∥20,∞ + ∥φk∥20,∞

][
|ϑk|21 + |φk|21

]
. (22)

Application of Grönwall lemma gives that

∥∇ϑk(T )∥20 + ∥∇φk(T )∥20 + (2µ3 −
µ2
2

µ1
)∥ϑk∥2L2(0,T ;H2(Ω)) + µ3∥φk∥2L2(0,T ;H2(Ω))

+ 2(α+ 1)∥ϑk∥2L2(0,T ;H1(Ω)) + ∥ϑk∇φk∥2L2(ΩT )

≤ α2

µ3
∥ϑk∥2L2(ΩT ) + C

[
∥ϑk∥2L2(0,T ;L∞(Ω)) + ∥φk∥2L2(0,T ;L∞(Ω))

]
[
∥ϑk∥2L2(0,T ;H1(Ω)) + ∥φk∥2L2(0,T ;H1(Ω))

]
+ ∥∇ϑk(0)∥20 + ∥∇φk(0)∥20.

(23)

By the uniform bounds in (17), the injection L2(0, T ;H1(Ω)) ↪→ L2(0, T ;L∞(Ω)), we have that
(23) is bounded. Thus, we have that ϑk, φk are uniformly bounded in L∞(0, T ;H1(Ω)). From the
fact that L1(0, T ;H1(Ω)

′
) is the pre-dual of L∞(0, T ;H1(Ω)), which is not reflexive Banach space,

we conclude from the first two edges (23) that

ϑk ⇀∗ ϑ, in L∞(0, T ;H1(Ω)), (24)

φk ⇀∗ φ, in L∞(0, T ;H1(Ω)). (25)

Then, we have {ϑ, φ} ∈ L∞(0, T ;H1(Ω)). Some known elliptical regularity results are applied to
limited, convex and open domains. From the eigenvalue in (13) and (see [7], Theorem 3.2.1.3),
we have that for a fixed (finite) k, zi ∈ H2(Ω), for i = 1, . . . , k. Hence, ϑk(., t), φk(., t) ∈ H2(Ω)
for almost every (a.e.) t ∈ (0, T ). Thus, by [7] we have ∥ϑk∥2 ≤ C∥∆ϑk∥0, for some positive
constant C and a.e. t ∈ (0, T ). Therefore, from the third and fourth bounds in (23), we conclude
that ϑk, φk are uniformly bounded in L2(0, T ;H2(Ω)). Since L2(0, T ;H2(Ω)) is a reflexive Banach
space [19], then, by compactness arguments [6], we get the existence of subsequences {ϑk, φk} ∈
L2(0, T ;H2(Ω)) such that

ϑk ⇀ ϑ, in L2(0, T ;H2(Ω)), (26)

φk ⇀ φ, in L2(0, T ;H2(Ω)). (27)

Thus, we have {ϑ, φ} ∈ L2(0, T ;H2(Ω)). Furthermore, since ∂ϑk

∂ν = 0 and ∂φk

∂ν = 0 on ∂Ω, and
given the weak convergence of ϑk → ϑ and φk → φ in H2(Ω), it follows that ∂ϑ

∂ν = 0 and ∂φ
∂ν = 0

on L2(∂Ω).

Estimate II. Set ηk = ∂ϑk

∂t , η
k = ∂φk

∂t in the weak form (15)-(16), combine the results, we have
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that∥∥∂ϑk
∂t

∥∥2
0
+
∥∥∂φk

∂t

∥∥2
0
+
µ1

2

d

dt

∥∥∇ϑk∥∥2
0
+
µ3

2

d

dt

∥∥∇φk
∥∥2
0
=α

(
ϑk,

∂φk

∂t

)
− (α+ 1)(ϑk,

∂ϑk

∂t

)
+

(
φk(ϑk)2,

∂ϑk

∂t

)
−
(
φk(ϑk)2,

∂φk

∂t

)
− µ2(∇φk,∇∂ϑk

∂t
).

(28)

By using (11), we get that

α
(
ϑk,

∂φk

∂t

)
≤ α2∥ϑk∥20 +

1

4
∥∂φ

k

∂t
∥20. (29)

By using (7) and (11), we obtain that

−
(
φk(ϑk)2,

∂φk

∂t

)
≤ ∥φk∥0,∞∥ϑk∥20,4

∥∥∂φk

∂t

∥∥
0
≤ ∥φk∥20,∞∥ϑk∥40,4 +

1

4

∥∥∂φk

∂t

∥∥2
0
, (30)

(
φk(ϑk)2,

∂ϑk

∂t

)
≤ ∥φk∥0,∞∥ϑk∥20,4

∥∥∂ϑk
∂t

∥∥
0
≤ ∥φk∥20,∞∥ϑk∥40,4 +

1

4

∥∥∂ϑk
∂t

∥∥2
0
. (31)

Combining (29)-(31) and multiplying by 2, implies that

∥∥∂ϑk
∂t

∥∥2
0
+
∥∥∂φk

∂t

∥∥2
0
+ µ1

d

dt

∥∥∇ϑk∥∥2
0
+ µ3

d

dt

∥∥∇φk
∥∥2
0
+ (α+ 1)

d

dt
∥ϑk∥20

≤ 2α2∥ϑk∥20 + µ2
2∥∆φk∥20 + 4

[
∥φk∥20,∞∥ϑk∥40,4

]
. (32)

Integrating over time, it follows that∫ T

0

∥∥∂ϑk
∂t

∥∥2
0
dt+

∫ T

0

∥∥∂φk

∂t

∥∥2
0
dt+ µ1

∥∥∇ϑk(T )∥∥2
0
+ µ3

∥∥∇φk(T )
∥∥2
0
+ (α+ 1)∥ϑk(T )∥20

≤ 2α2

∫ T

0

∥ϑk∥20dt+ 2µ2
2

∫ T

0

∥∆φk∥20dt+ 4

∫ T

0

[
∥φk∥20,∞∥ϑk∥40,4

]
dt+ µ1

∥∥∇ϑk(0)∥∥2
0

+ µ3

∥∥∇φk(0)
∥∥2
0
+ (α+ 1)∥ϑk(0)∥20.

(33)

By using (11), and L∞(0, T ;H1(Ω)) ↪→ L∞(ΩT ) on the right side of (33) leads to∫ T

0

∥φk∥20,∞∥ϑk∥40,4dt ≤∥φk∥2L∞(ΩT )∥ϑ
k∥4L4(ΩT )

≤1

2
∥φk∥4L∞(0,T ;H1(Ω)) +

1

2
∥ϑk∥8L4(ΩT ).

(34)

By noting (34) and the bounds in (17), we see that (33) is bounded by a positive constant. We get
that ∂ϑk

∂t and ∂φk

∂t are uniformly bounded in L2(ΩT ). As L2(ΩT ) is a reflexive Banach space, thus,
by compactness arguments, we get to the existence of subsequences {ϑk, φk} ∈ L2(ΩT ) such that

∂ϑk

∂t
⇀

∂ϑ

∂t
, in L2(ΩT ), (35)

∂φk

∂t
⇀

∂φ

∂t
, in L2(ΩT ). (36)
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Thus, we have that ∂ϑ
∂t ,

∂φ
∂t ∈ L2(ΩT ).

Estimate III. Setting ηk = (φk)3 in (16), it follows that

1

4

d

dt
∥φk∥40,4 + 3µ3∥φk∇φk∥20 + ∥ϑk(φk)2∥20 = α(ϑk, (φk)3). (37)

By using (11) on (37), we have that

α(ϑk, (φk)3) ≤ 3

4
∥ϑk(φk)2∥20 +

α2

3
∥φk∥20. (38)

By substituting (38) in (37), multiplying the result by 4, and integrating over time, we have that

∥φk(T )∥40,4 + 12µ3∥φk∇φk∥2L2(ΩT ) + ∥ϑk(φk)2∥2L2(ΩT ) ≤
4α2

3
∥φk∥2L2(ΩT ) + ∥φk(0)∥40,4. (39)

Recalling φk
0 ∈ H1(Ω), using (17) and L∞(0, T ;L2(Ω)) ↪→ L2(ΩT ), since L1(0, T ;L

3
4 (Ω)) is the

pre-dual of L∞(0, T ;L4(Ω)), which is not reflexive Banach space, we have that

φk ⇀∗ φ, in L∞(0, T ;L4(Ω)).

Therefore, we get to φ is uniformly bounded in L∞(0, T ;L4(Ω)).

Estimate IV. Setting ηk = (ϑk + φk)3 in (15), ηk = (ϑk + φk)3 in (16), and suppose that
µ = µ1 = µ2 + µ3, summing the resulting equations, and adding and subtracting the terms
(φk, (ϑk + φk)3), we deduce

1

4

d

dt
∥ϑk + φk∥40,4 + 3µ∥(ϑk + φk)∇(ϑk + φk)∥20 + ∥ϑk + φk∥40,4 = (φk, (ϑk + φk)3). (40)

We use (11) to find that

(φk, (ϑk + φk)3) ≤ 3

4
∥ϑk + φk∥40 +

1

4
∥φk∥40,4. (41)

By substituting (41) in (40), and multiplying the result by 4, we conclude that

d

dt
∥ϑk + φk∥40,4 + 12µ∥(ϑk + φk)∇(ϑk + φk)∥20 + ∥ϑk + φk∥40,4 ≤ ∥φk∥40,4. (42)

Integral over time leads to

∥ϑk + φk(T )∥40,4 + 12µ∥(ϑk + φk)∇(ϑk + φk)∥2L2(ΩT ) + ∥ϑk + φk∥4L4(ΩT )

≤ ∥φk∥4L4(ΩT ) + ∥ϑk + φk(0)∥40,4. (43)

Recalling ϑk0 , φ
k
0 ∈ H1(Ω), using Estimate III, L∞(0, T ;L4(Ω)) ↪→ L4(ΩT ) and since

L1(0, T ;L
3
4 (Ω)) is the pre-dual of L∞(0, T ;L4(Ω)), which is not reflexive Banach space, we have

that

ϑk + φk ⇀∗ ϑ+ φ, in L∞(0, T ;L4(Ω)).

Therefore, we get ϑ+ φ is uniformly bounded in L∞(0, T ;L4(Ω)), and since L4(ΩT ) is a reflexive
Banach space [19], then, by compactness arguments [6], we get the existence of subsequences
ϑk + φk ∈ L4(ΩT ) such that

ϑk + φk ⇀ ϑ+ φ, in L4(ΩT ).
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Estimate V. On setting ηk = (ϑk)3 in (15) and adding and subtracting (ϑk, (ϑk)5), we obtain
that

1

4

d

dt
∥ϑk∥40,4 + 3µ1∥ϑk∇ϑk∥20 + (α+ 1)∥ϑk∥40,4 + ∥ϑk∥60,6

= −3µ2(∇φk, (ϑk)2∇ϑk) + (ϑk + φk, (ϑk)5). (44)

Using (7) and (11) gives that

−3µ2(∇φk, (ϑk)2∇ϑk) =− 3µ2

∫ T

0

∇φk∇ϑk(ϑk)2dx

≤3µ2∥ϑk∥20,∞∥∇φk∥0∥∇ϑk∥0

≤9µ2
2

2
∥ϑk∥40,∞∥∇φk∥20 +

1

2
∥∇ϑk∥20.

(45)

By using (7) Gagliardo - Nirenberg (9), and (11) on (44), we find that

(ϑk + φk, (ϑk)5) ≤∥ϑk + φk∥0,6∥ϑk∥50,6

≤A∥ϑk + φk∥
2
3
0,4∥ϑk + φk∥

1
3
1 ∥ϑk∥50,6

≤A∥ϑk + φk∥40,4∥ϑk + φk∥21 +
3

4
∥ϑk∥60,6.

(46)

By substituting (46) and (45) into (44) and multiplying the result by 4, we have that

d

dt
∥ϑk∥40,4 + 12µ1∥ϑk∇ϑk∥20 + 4(α+ 1)∥ϑk∥40,4 + ∥ϑk∥60,6

≤ 18µ2
2∥ϑk∥40,∞∥∇φk∥20 +

1

2
∥∇ϑk∥20 +A∥ϑk + φk∥40,4∥ϑk + φk∥21. (47)

Integrating over time leads to

∥ϑk(T )∥40,4 + 12µ1∥ϑk∇ϑk∥2L2(ΩT ) + 4(α+ 1)∥ϑk∥4L4(ΩT ) + ∥ϑk∥6L6(ΩT )

≤ 18µ2
2 max
0≤t≤T

∥ϑk∥40,∞∥∇φk∥2L2(ΩT ) + 2∥ϑk∥L2(0,T ;H1(Ω)) +A max
0≤t≤T

∥ϑk + φk∥40,4∥ϑk

+ φk∥2L2(0,T ;H1(Ω)) + ∥ϑk(0)∥40,4.

(48)

Recalling ϑk0 ∈ H1(Ω), using Estimate I,L∞(0, T ;H1(Ω)) ↪→ L∞(ΩT ), Estimate IV and (17), since
L1(0, T ;L

3
4 (Ω)) is the pre-dual of L∞(0, T ;L4(Ω)), which is not reflexive Banach space, we have

that

ϑk ⇀∗ ϑ, in L∞(0, T ;L4(Ω)).

Therefore, we get ϑ is uniformly bounded in L∞(0, T ;L4(Ω)). We conclude that ϑk are uniformly
bounded in L6(ΩT ). Since L6(ΩT ) is a reflexive Banach space [19], then, by compactness argu-
ments [6], we get the existence of subsequences ϑk ∈ L6(ΩT ) such that

ϑk ⇀ ϑ, in L6(ΩT ).

Estimate VI. By setting ηk = (φk)5 in (16), it follows that

1

6

d

dt
∥φk∥60,6 + 5µ3∥(φk)2∇φk∥20 + ∥ϑk(φk)3∥20 = α(ϑk, (φk)5). (49)
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By using (11) into (49), we have that

α(ϑk, (φk)5) ≤ 1

2
∥ϑk(φk)3∥20 +

α2

2
∥φk∥40. (50)

By substituting (50) into (49), multiplying the result by 6, and integral over time, we obtain that

∥φk(T )∥60,6 + 30µ3∥(φk)2∇φk∥2L2(ΩT ) + 3∥ϑk(φk)3∥2L2(ΩT ) ≤ 3α2∥φk∥4L4(ΩT ) + ∥φk(0)∥60,6. (51)

Recalling φk
0 ∈ H1(Ω), using Estimate III, and L∞(0, T ;L4(Ω)) ↪→ L4(ΩT ), since L1(0, T ;L

5
6 (Ω))

is the pre-dual of L∞(0, T ;L6(Ω)), which is not reflexive Banach space, we have that

ϑk ⇀∗ ϑ, in L∞(0, T ;L6(Ω)).

Therefore, we get ϑ is uniformly bounded in L∞(0, T ;L6(Ω)).

EstimateVII. Setting ηk = (ϑk+φk)5 in (15), ηk = (ϑk+φk)5 in (16) and suppose thatµ = µ1 =
µ2+µ3, summing the resulting equations, and adding and subtracting the terms (φk, (ϑk +φk)5),
we deduce

1

6

d

dt
∥ϑk + φk∥60,6 + 5µ∥(ϑk + φk)2∇(ϑk + φk)∥20 + ∥ϑk + φk∥60,6 = (φk, (ϑk + φk)5). (52)

We use (11) to have

(φk, (ϑk + φk)5) ≤ 5

6
∥ϑk + φk∥60,6 +

1

6
∥φk∥60,6. (53)

By substituting (53) in (52), and multiplying the result by 6, it follows that

d

dt
∥ϑk + φk∥60,6 + 30µ∥(ϑk + φk)2∇(ϑk + φk)∥20 + ∥ϑk + φk∥60,6 ≤ ∥φk∥40,6. (54)

Integrating over time leads to

∥ϑk + φk(T )∥60,6 + 30µ∥(ϑk + φk)2∇(ϑk + φk)∥2L2(ΩT ) + ∥ϑk + φk∥6L6(ΩT )

≤ ∥φk∥6L6(ΩT ) + ∥ϑk + φk(0)∥60,6. (55)

Recalling ϑk0 , φk
0 ∈ H1(Ω), since L1(0, T ;L

5
6 (Ω)) is the pre-dual of L∞(0, T ;L6(Ω)), which is not

reflexive Banach space, we have that

ϑk + φk ⇀∗ ϑ+ φ, in L∞(0, T ;L6(Ω)).

Therefore, we get ϑ+ φ is uniformly bounded in L∞(0, T ;L6(Ω)), and since L6(ΩT ) is a reflexive
Banach space [19], then, by compactness arguments [6], we get the existence of subsequences
ϑk + φk ∈ L6(ΩT ) such that

ϑk + φk ⇀ ϑ+ φ, in L6(ΩT ).

Estimate VIII. On setting ηk = (ϑk)5 in (15) and adding (ϑk, (ϑk)7) for both sides, we obtain
that

1

6

d

dt
∥ϑk∥60,6 + 5µ1∥(ϑk)2∇ϑk∥20 + (α+ 1)∥ϑk∥60,6 + ∥ϑk∥80,8

= −5µ2(∇φk, (ϑk)4∇ϑk) + (ϑk + φk, (ϑk)7). (56)
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Using (7) and (11), we find that

−5µ2(∇φk, (ϑk)4∇ϑk) =− 5µ2

∫ T

0

∇φk∇ϑk(ϑk)4dx

≤5µ2∥ϑk∥40,∞∥(∇φk∥0∥∇ϑk∥0

≤25µ2
2

2
∥ϑk∥40,∞∥∇φk∥20 +

1

2
∥∇ϑk∥20.

(57)

By using (7), the Gagliardo-Nirenberg (9) and (11) on the right hand side of (56), we find that

(ϑk + φk, (ϑk)7) ≤∥ϑk + φk∥0,8∥ϑk∥70,8

≤A∥ϑk + φk∥
3
4
0,6∥ϑk + φk∥

1
4
1 ∥ϑk∥60,8

≤A∥ϑk + φk∥60,6∥ϑk + φk∥21 +
5

6
∥ϑk∥80,8.

(58)

By substituting (57) and (58) into (56) and multiplying the result by 6, we obtain

d

dt
∥ϑk∥60,6 + 30µ1∥(ϑk)2∇ϑk∥20 + 6(α+ 1)∥ϑk∥60,6 + ∥ϑk∥80,8

≤ 75µ2
2∥ϑk∥40,∞∥∇φk∥20 + 3∥∇ϑk∥20 +A∥ϑk + φk∥60,6∥ϑk + φk∥21. (59)

Integrating over time leads to

∥ϑk(T )∥60,6 + 30µ1∥(ϑk)2∇ϑk∥2L2(ΩT ) + 6(α+ 1)∥ϑk∥6L6(ΩT ) + ∥ϑk∥8L8(ΩT )

≤ 75µ2
2 max
0≤t≤T

∥ϑk∥40,∞∥∇φk∥2L2(ΩT ) + 3∥ϑk∥L2(0,T ;H1(Ω)) +A max
0≤t≤T

∥ϑk + φk∥60,6∥ϑk

+ φk∥2L2(0,T ;H1(Ω)) + ∥ϑk(0)∥60,6.

(60)

Recalling ϑk0 ∈ H1(Ω), using Estimate I, L∞(0, T ;H1(Ω)) ↪→ L∞(ΩT ), Estimate VII and (17),
since L1(0, T ;L

5
6 (Ω)) is the pre-dual of L∞(0, T ;L6(Ω)), which is not reflexive Banach space, we

have that

ϑk ⇀∗ ϑ, in L∞(0, T ;L6(Ω)).

Therefore, we get ϑ is uniformly bounded in L∞(0, T ;L6(Ω)), and since L8(ΩT ) is a reflexive
Banach space [19], then, by compactness arguments [6], we get the existence of subsequences
ϑk ∈ L8(ΩT ) such that

ϑk ⇀ ϑ, in L8(ΩT ).

Lemma 3.1. If k ≥ 0, assume that

ϑ ∈ L2(0, T ;Hk+1(Ω)),
∂ϑ

∂t
∈ L2(0, T ;Hk−1(Ω)).

Then, ϑ ∈ C([0, T ];H1(Ω)).

Proof. See [13], pages 191-194.

Here, in our case, k = 1, Hk+1(Ω) = H2(Ω), Hk(Ω) = H1(Ω), Hk−1(Ω) = L2(Ω). Thus, from
Lemma 3.1 we have that ϑ, φ ∈ C([0, T ];H1(Ω)).
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3.2 Continuous dependence

Suppose that {ϑ1, φ1} and {ϑ2, φ2} satisfy the weak form (15) and (16), with initial conditions
ϑ1(., 0) = ϑ1,0(.), ϑ2(., 0) = ϑ2,0(.), and φ1(., 0) = φ1,0(.), φ2(., 0) = φ2,0(.), respectively such
that ϑ1,0(.) ̸= ϑ2,0(.), and φ1,0(.) ̸= φ2,0(.). Setting ϱ1 = ϑ1 − ϑ2 and ϱ2 = φ1 − φ2, and setting
ϖ = −∆ϱ1+ϱ1 andϖ = −∆ϱ2+ϱ2 in (15) and (16), subtractingweak forms lead after integrating
by parts to

1

2

d

dt

(
∥ϱ1∥20 + ∥∇ϱ1∥20

)
+

1

2

d

dt

(
∥ϱ2∥20 + ∥∇ϱ2∥20

)
+ µ1

(
∥∇ϱ1∥20 + ∥∆ϱ1∥20

)
+ µ3

(
∥∇ϱ2∥20 + ∥∆ϱ2∥20

)
+ (α+ 1)

(
∥∇ϱ1∥20 + ∥ϱ1∥20

)
= α(∇ϱ1∇ϱ2 + ϱ1ϱ2) + µ2

∫
Ω

(∆ϱ2∆ϱ1 +∇ϱ2∇ϱ1)dx

+ (φ1ϑ
2
1 − φ2ϑ

2
2,−∆ϱ1 + ϱ1)− (φ1ϑ

2
1 − φ2ϑ

2
2,−∆ϱ2 + ϱ2).

(61)

By applying (11) into (61), and obtain

α(∇ϱ1∇ϱ2 + ϱ1ϱ2) ≤
α2

µ1
∥∇ϱ2∥20 +

µ1

4
∥∇ϱ1∥20 +

α+ 1

2
∥ϱ1∥20 +

α2

2(α+ 1)
∥ϱ2∥20. (62)

By applying (7) and (11), yield

(φ1ϑ
2
1 − φ2ϑ

2
2, ϱ1)− (φ1ϑ

2
1 − φ2ϑ

2
2, ϱ2)

= (φ1(ϑ
2
1 − ϑ22) + (φ1 − φ2)ϑ

2
2, ϱ1)− (φ1(ϑ

2
1 − ϑ22) + (φ1 − φ2)ϑ

2
2, ϱ2)

= (φ1(ϑ1 + ϑ2)ϱ1, ϱ1) + (ϱ2ϑ
2
2, ϱ1)− (φ1(ϑ1 + ϑ2)ϱ1, ϱ2)− (ϱ2ϑ

2
2, ϱ2)

≤ C
[
∥φ1∥20,∞ + ∥ϑ1∥20,∞ + ∥ϑ2∥20,∞

][
∥ϱ1∥20 + ∥ϱ2∥20

]
− ∥ϑ2ϱ2∥20.

(63)

In the same way, we can show that

− (φ1ϑ
2
1 − φ2ϑ

2
2,∆ϱ1) + (φ1ϑ

2
1 − φ2ϑ

2
2,∆ϱ2)

= (φ1ϱ2(ϑ1 + ϑ2),∆ϱ1)− (ϑ22ϱ2,∆ϱ1)− (φ1ϱ1(ϑ1 + ϑ2),∆ϱ2) + (ϑ22ϱ2,∆ϱ2)

≤ C
[
∥φ1∥20,∞ + ∥ϑ1∥20,∞ + ∥ϑ2∥20,∞

][
∥∇ϱ1∥20 + ∥∇ϱ2∥20

]
− ∥ϑ2∥20,∞∥∇ϱ2∥20.

(64)

Substituting (62)-(64) into (61) leads to

1

2

d

dt

(
∥ϱ1∥20 + ∥∇ϱ1∥20

)
+

1

2

d

dt

(
∥ϱ2∥20 + ∥∇ϱ2∥20

)
+ (µ1 −

µ2
2

2µ3
)∥∆ϱ1∥20 +

1

2
µ1∥∇ϱ1∥20

+
1

2
µ3∥∆ϱ2∥20 + (µ3 −

α2

µ1
− µ2

2

µ1
)∥∇ϱ2∥20 + (α+ 1)∥∇ϱ1∥20 +

α+ 1

2
∥ϱ1∥20 + ∥ϑ2ϱ2∥20

+ ∥ϑ2∥20,∞∥∇ϱ2∥20

≤ α2

2(α+ 1)
∥ϱ2∥20 + C

[
∥φ1∥20,∞ + ∥ϑ1∥20,∞ + ∥ϑ2∥20,∞

][
∥ϱ1∥20 + ∥∇ϱ1∥20 + ∥ϱ2∥20 + ∥∇ϱ2∥20

]
.

(65)

If we eliminate the positive terms from the left-hand side and multiply the result by 2, we obtain

d

dt
∥ϱ1∥20 +

d

dt
∥ϱ2∥20

≤ C
[
1 + ∥φ1∥20,∞ + ∥ϑ1∥20,∞ + ∥ϑ2∥20,∞

]
+
[
∥ϱ1∥20,∞ + ∥ϱ2∥20,∞ + ∥∇ϱ1∥20 + ∥∇ϱ2∥20

]
. (66)

From the application of the Grönwall lemma (10), yields
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∥ϱ1(T )∥21 + ∥ϱ2(T )∥21

≤ exp

(
2CT +

∫ T

0

[
1 + ∥φ1∥20,∞ + ∥ϑ1∥20,∞ + ∥ϑ2∥20,∞

]
dt

)[
∥ϱ1(0)∥21 + ∥ϱ2(0)∥21

]
. (67)

On noting the uniform bounds in (17), we have

∥ϱ1(T )∥21 + ∥ϱ2(T )∥21 ≤ C
(
∥ϱ1(0)∥21 + ∥ϱ2(0)∥21

)
. (68)

Thus, if (ϑ1(0), φ1(0)) = (ϑ2(0), φ2(0)), then (ϱ2(0), ϱ2(0)) = (0, 0) and hence it follows from
(68) that (ϱ2(t), ϱ2(t)) = (0, 0) and hence ϑ1(t) = ϑ2(t) and φ1(t) = φ2(t) for all t. However, if
(ϑ1(0), φ1(0)) ̸= (ϑ2(0), φ2(0)), then we have continuous dependence in H1(Ω). This is complete
proof.

4 Conclusions

If the initial data is inH1(Ω), there is a unique global strong solution depending continuously
on the initial data. We show the continuous dependence of the strong solution on the initial data.
This seems to represent a limitation in the Faedo-Galerkin method and the fact when we took the
initial data in H1(Ω).
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